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Abstract 

We investigate, in detail, symplectic equivalence between several conformal classes of Lorentz 
metrics on the hyperboloid of one sheet H ” ’ Z % x T - A and affine coadjoint orbits of the group 
Diff +(A) of orientation preserving diffeomorphisms of A Z T with its natural projective structure. 
This will allow for generalizations, namely, to the case of arbitrary projective structures on null 
infinity. 0 2000 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

According to the Riemann uniformization theorem, there exists only three conformal 

types of simply connected Riemannian surfaces, namely 

S2 lR2 H2 

K=l K=O K = -1. 
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In the Lorentz case considered in this paper, the relevant geometry is the so-called “fourth” 
geometry of Poincare [25] as opportunely mentioned in [ 191, i.e., the Lorentz geometry of 
the hyperboloid of one sheet 

K = fl. 

“LA QUATRI~ME G~OM~TRIE. - Parmi ces axiomes implicites, il en est un qui semble 
meriter quelque attention, parce qu’en l’abandonnant, on peut construire une quatrieme 
geometric aussi coherente que celle d’Euclide, de Lobatchevsky et de Riemann. [. . .] Je 
ne citerai qu’un de ces theoremes et je ne choisirai pas le plus singulier : me droite r&lZe 
peut t?tre perpendiculaire k? elle-&me.” 

Hemi Poincare 
La science et l’hypothese (1902) 

Let us, nevertheless, emphasize that a Lorentz uniformization theorem is still not avail- 
able, as of today - the problem lying in the classification of the conformal boundaries 
[20,3 11. 

This study has been triggered by previous work of Kostant and Steinberg [ 18,191 who 
first pointed out an intriguing relationship between the Schwarzian derivative of a diffeo- 
morphism of null infinity U of the Lorentz hyperboloid H”’ and the transverse Hessian of 
the conformal factor associated with this diffeomorphism (viewed as a conformal transfor- 
mation of H ‘I~). We contend that this correspondence stems from a particular geometric 
object, namely the cross-ratio as a four-point function associated with the canonical pro- 
jective structure of the projective line. 

Such an observation prompted us to further investigate the relationship between (i) the 
conformal geometry of the hyperboloid of one sheet H ‘3’ and (ii) the Virasoro group, Vir. 

Our contribution has therefore consisted in identifying several conformal classes of 
Lorentz metrics on H ‘9’ Z U2 - A within the space of projective structures on A S U, i.e., 
the (regular) dual of Vect(U) [ 161. In doing so, we have been able to give an explicit, yet 
non-standard, realization of the generic coadjoint orbits [12,13,16,17,33] of the Virasoro 
group in the framework of two-dimensional real conformal geometry. Note that Iglesias 
[ 151 has also obtained other realizations of such orbits in quite a different context. 

The paper is organized as follows. 
?? Section 2 describes in various ways the Lorentz cylinder ‘H = S x S-A and its associated 

conformal structure for special projective structures of null infinity, i.e., the circle S. 
?? In Section 3, we briefly introduce the Schwarzian 1-cocycle S of Diff+(S), while in 

Section 4, we recall the Kostant-Sternberg Theorem [ 191 and the basic notions attached 
to conformal Lorentz structures on surfaces. 

??Our main results are presented in Section 5 where special, infinite-dimensional, conformal 
classes of metrics g on 7-1 are shown to be symplectomorphic to coadjoint orbits of 
the group Vir - central extension of Conf+(‘H) g Diff+(S). The Conf+(‘FI)-orbit 
of the flat Lorentz metric on the cylinder corresponds to a zero central charge orbit, 
whereas the central charge c of the other generic Vir-orbits we investigate is related to 



C. Duval, L. Guieu/Journal of Geometry and Physics 33 (2000) 103-127 105 

the (constant) curvature K of (‘FI, g) by c K = 1. We, likewise, derive the Bott-Thurston 
cocycle within the same framework. 
Some perspectives are finally drawn in Section 6. It is, in particular, expected that our 
results allow for generalizations that would, e.g., relate Kulkarni’s Lorentz surfaces and 
universal Teichmtiller space. 

The single sheeted hyperboloid H:” L, lR*.’ defined for c E R; by 

x2 + y* -t*=, (2.1) 

carries a canonical Lorentz metric ’ given by the induced quadratic form 

g, = dX* + dy* - dt*. (2.2) 

Proposition 2.1.1 [20,34]. The hyperboloid of one sheet H,‘,’ 2 R x T with radius r = 
fi # 0 is the homogeneous space 

HI,* = SL(2, R)/SO(l, 1) C 

which is symplectomorphic to the SL(2, R)-adjoint orbit of 

m. The Lorentz hyperboloid of one sheet 

2.1. An adjoint orbit in 51(2, R) 

r 0 ( > o _r E W2, W. 

As a L.orentz manifold, Hi” 1s a space form of constant curvature * 

K=l 
C 

whose group of direct isometries is PSL(2, R). 

(2.3) 

Remark 2.1.1. The unit hyperboloid H:. 1 is also symplectomorphic to the mumfold of 
oriented geodesics of the Poincare’ disk H* Z SL(2, R)/SO(2). 

From now on we will write H as a shorthand notation for H’?’ provided no confusion 
occurs. 

The following expression for the Lorentz metric (2.2) on H will prove useful. In view 
of (2.1), write x = Q sin 8, y = Q cos 6, r = Q sin I#J, t = Q cos q5 so that the metric (2.2) 

’ In the physics literature H:” is called anti-de Sitter spacetime. 
2 Since g -+ -g yields K + -K and preserves the Lorentz signature (+. -), we will admit c < 0 in 

(2.3); see [lo]. Recall that K = $ R, where R is the scalar curvature. 
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takes the form g, = r2 csc2 @(de2 - d@2). Putting now 01 = 6 + 4 and e2 = e - 4, we 
obtain 

4c d6Jl de2 
gc = j&t+ _ ei0212 (2.4) 

with (see (2.3)) 

c E [w*, (2.5) 

yielding the canonical Killing metric on the hyperboloid 

HZUxT-A (2.6) 

globally parametrized by 81~65 E T = R/(2nZ) with 81 # (32. See, e.g., [18]. The trans- 
verse null foliations 81 = const. and 02 = const. correspond to the rulings of the hyper- 
boloid, and the diagonal A is the conformal boundary [20] (or null infinity [24]) of H. 

2.2. The Cay&-Klein model 

The material of this section has been borrowed from [4] with a slight adaptation to our 
framework. 

Definition 2.2.1. An involution of RP’ is a homography s E PGL(2, R) such that s2 = id 
and s # id. We will denote by Z the space of involutions. 

In the projective plane P associated to the vector space GL(2, R), there is a distinguished 
conic C, defined by the light cone. 

Lemma 2.2.1. The space of involutions is naturally identified with P - C. 

The determinant map det : GL(2, R) ----+ R* descends, after projectivization, as a map 
6 : PGL(2, R) -+ Z/(22), that defines the two connected components of the projective 
group. Then, we can define 2+ = Z n 6-l (1) th e space of direct involutions and 2_ = 
Z II 6-l (- 1) the space of anti-involutions. Let us denote by D the interior of the convex 
hull of C and by K the complement of D U C in P. 

Proposition 2.2.1. The space of direct involutions is naturally isomorphic to the disk D 
and the space of anti-involutions to Ic. 

Remark 2.2.1. Topologically, Ic is a Mobius band. 

Proposition 2.2.2. The twofold covering of orientationsforT_ is C x C-A. The restriction 
of the projection n : 31(2, R) - {0) + P to the Lorentz hyperboloid H is a twofold 
covering on Ic. 
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There exists an isomorphism P E RP2 such that the conic C is mapped onto the unit 
circle T in the affine plane {t = l), where x, y, t are homogeneous coordinates in [w3. This 
isomorphism is given by the map 

Thus, we verify that the light cone, whose equation is given by det(X) = 0, is mapped onto 
the conic of homogeneous equation x2 + y2 - t2 = 0. 

In the Klein model, the complement K = {Z E C 1 IzI > 1) of the closed unit disk 
thus represents the projectivized hyperboloid P(H) in RP2 S P(S1(2, Iw)). It is the space 
of geodesics of the open unit disk, i.e., of the hyperbolic plane in the Klein model. See 
Remark 2.1.1. 

2.3. Projective structures 

In order to gain some insight into the preceding results, let us briefly recall the notion of 
projective structure [2,3,5,32]. To that end, we need the 

Definition 2.3.1. A projective structure tin on an n-dimensional connected manifold M 
is given by the following data: 
(1) an immersion Q, : G + RPn defined on the universal covering G of M, 
(2) a homomorphism T : XI (M) + PSL(n + 1, rW) 
such that 

Vu’ar,(M) @oa=T(a)o@. (2.7) 

One calls 0 the developing map and T the holonomy of the structure. 

We denote by m = [a, T] the associated projective structure. The developing map and 
the holonomy characterizes the structure up to conjugation by the projective group, i.e., 

vA~pGL(nfl,[W) [Ao@,A.T+A-‘]=[@,T]. 

Such a structure is equivalently given by an atlas of projective charts pi : Ui c M ---+ 
[w P” with transition diffeomorphisms in PGL(n + 1, W). 

In the one-dimensional case under study, and, more particularly in the case of the circle S, 
a projective structure u is given by a pair (@, M) with 0 : R + RP ’ an immersion and 
M E PSL(2, W). Condition 2.7 then reads 

@(0 + 2n) = M . o(e). 

It is a classic result [13,28] that the space P(S) of all projective structures on S is an 
affine space modeled on the space Q(s) of quadratic differentials 9 = u(0) de2 of S. 
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The projective atlas associated with q is obtained by locally solving the third-order non- 
linear differential equation q = S(Q), where S stands for the Schwarzian derivative (see 
below). 

From now on, we restrict considerations to either choices of projective structures on S, 
namely 
(1) the torus T = R/(2nZ) defined by the following developing map 3 (with trivial holo- 

nomy) 

Q(e) = [e”] or Q(0) = 2tan t, (2.8) 

(2) the projective line III P ’ defined by the developing map 

Q(0) = tan8 or Q(t) = t. (2.9) 

2.4. Lorentzian metric and cross-ratio 

2.4.1. First approach 
Let us describe, following Ghys [lo], how the canonical Lorentz metric (2.4) on anti-de 

Sitter space (2.6) indeed originates from the cross-ratio 

(zl z2 z3 z4) = (ZI - z3&2 - z4) 
1 1 9 

(Zl - Z4k2 - 23) 
(2.10) 

of four points on the projective line [3]. 
Let us fix (01, f32) E T2 - A and consider then a nearby point (&, Cl4) = (01 + de), 02 + 

d&). Put Zj = eiej for j = 1, . . . ,4 and perform a Taylor expansion of the cross-ratio 
(2.10) at (01, &), so that 

(zl,z2,z3,Z4)= 

$1 ei@ (1 _ ,i dO1 )(I _ ,i d@ 1 

($1 - ei(ez+dQ2))(ei02 _ ,i(Q,+df?l)) 

c-i d81)(-i de2) = 
(& - $2)(&b _ eiOl >,-i& e-iO2 

+..* 

-d& d02 
= 

lei@ _ $2 12 
+... 

where the ellipsis “. . s” stands for “terms of order 2 3”. One can thus claim that, up to 
higher order terms, the metric (2.4) on the unit hyperboloid H (2.6) is given by gl = 

-~(ZI,ZZ,ZI + dzl,z2+ dz2)+...or,equivalently,by 

gl =-4b$~(z,,z2,zl+edzl,z2+edz2) (2.11) 

which is therefore conspicuously PSL(2, @-invariant. 

3 we use the notation [z] = [wz for all z E c - (01. 
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Fig. 1. The Klein model 

Resorting to Definition 2.3.1, we then have the 

Theorem 2.4.1. Consider the hyperboloid ‘H = S x S - A where the circle S has a 
projective structure defined by @ E Difft,,(R, IW’) as in (2.8) or (2.9). Then, ‘H carries a 
natural PSL(2, R)-invariant metric of the form 

g, = (@ x @)* 4dr1 dt2 
01 - t2j2' 

(2.12) 

Proof. The cross-ratio (2.10) is PSL(2, @-invariant and so is the Lorentz metric 4 dtt dt2/ 
(tl -t2)2 ofllW’x RP’-Agivenby(2.1l)withzj = tj (see(2.9)). Inanycase(2.8)or(2.9), 
the metric (2.12) defined on R2 - r where r = (0 x @)-I (A) is automatically rrt (S)- 
invariant thanks to (2.7). It is invariant, as well, under the universal covering Px(2, R) 
of PSL(2, R). Hence, this metric descends to H = S x S - A = n x n(R2 - r), 
where n : R -+ S is the universal covering map. The projected metric gt is then clearly 
PSL(2, IQ!)-invariant. Cl 

Example (2.4) corresponds to the developing maps (2.8); as for the first developing map 
in (2.9), it leads via (2.12) to the metric of the Klein model of Section 2.2 (see Fig. 1). 

2.4.2. Alternative method 
For the sake of completeness, we will again resort to the cross-ratio to derive the canonical 

Lorentz metric on the space of anti-involutions 2_ introduced in Section 2.2, whence on 
the unit hyperboloid H. If 

(2.13) 

is an element of the unit hyperboloid H (that is: a2 + bc = l), let us consider its image s 
under the twofold cover 
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given by the anti-involution 

at +b 
s(t) = - 

ct -a’ 
(2.14) 

Lemma 2.4.1. The twofiedpoints of the anti-involution s are 

{=- b a+1 -=-. 
a-l c 

Proof. These are the two real roots of the equation ct* - 2at - b = 0 expressed with the 
help of the relation a2 + bc = 1. 0 

Considering another anti-involution 

a’t + b’ 
s’(t) = ~ 

c’t - a’ 

prompts us to introduce the cross-ratio (2.10) of the fixed points c, 5, {‘, {‘, namely 

(2.15) 

Remark 2.4.1. We suppose that thejixedpoints are ordered according to the choice of an 
orientation of the projective line. 

Lemma 2.4.2. If 6X E TX H is any tangent vector and 6s = Tp(SX), one has 

B(S, S + 6s) = -&C(aSc - c6a)* - (SC)*) + II(Sa, 6c)11*C(6a, 6c) 

where 11 . II is the Euclidean norm and E(h, k) -+ 0 whenever (h, k) + 0. 

Proof. Let us posit s’ = s + as, i.e., a’ = a + 6a, b’ = b + Sb and c’ = c + 6~. From 
definition (2.15) we get 

j3(s,s+h) = ( a-l a+1 a'-1 a'+1 
- - - - 

c ’ c ’ c’ ’ (y 
> 

. 

With the help of two homotheties, we readily find 

p(s, s + 6s) = (c’(a - l), c’(a + l), c(a’ - l), c(a’ + 1)) 

(a& - &a)* - 6c2 

= (a&z - &a)* - (6c + 2c)* 

and the sought formula is obtained by developing this expression up to the second order. 0 

Theorem 2.4.2. If gl is the (induced) Killing metric on H, one has 

/?(s, s + 6s) = -1 &1(8X, 6X) + l16xJ12c(6x). 
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Proof. Let X E H be as in (2.13) and s = p(X) be the associated anti-involution 
Recall that the induced Killing metric on H reads 

gl(6X, 6X) = - det(SX) = (&z)* + 6b& 

for any 6X E TX H. With the help of the constraint a2 + bc = 1, we obtain the 

111 

(2.14). 

(2.17) 

(local) 
expressions: b = (1 -aZ)/c and Sb = -2a&z/c+ (aZ - 1)&~/c’. Then, Eq. (2.17) becomes 

g1(6X, SX) = $ ((aSc - c&2)2 - (SC)*) 

which, together with Lemma 2.4.2, yields the desired result. 0 

3. The Schwarzian derivative 

3.1. Osculating homography of a diffeomolphism 

Let v : RP’ + RP’ be a diffeomorphism and let to E UP’. We want to find the 
homography h E PGL(2, rW) that best approximates the diffeomorphism q at this point to. 

Proposition 3.1.1. This homography h exists and is unique. It is completely dejked by the 
conditions 

h(to) = v(to), 

h’(to) = bo’(to)v 

h”(to) = q”(to). 

The diffeomorphism h-’ o q has the 2-jet of the identity at to. The difference between h 
and (D starts, hence, at the third-order derivative. (See, e.g., [lo].) 

Definition 3.1.1. The Schwarzian derivative of q at the point to is 

S((p)(trj) := (h-’ o cp>“‘(to). 

The quantity S(p) (to) measures how much the diffeomorphism 40 differs from a homography 
at the point to. All projective information about q is encoded into the Schwarzian derivative. 
If we identify the real projective line with [w U {cm) by: [x, y] H t = y/x, we obtain the 
classical formula: 

S(qJ)= ---- ( (P”‘(t) 3 v”(t)* dt2 

v’(t) 2 q’(t)2 > . (3.1) 

The graph r, of our diffeomorphism is a simple closed curve on [WP ’ x RP ‘. 

Definition 3.1.2. The homography h and its graph fh are, respectively, called the osculating 
homography and the osculating hyperbola of (p at to. 
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3.2. The Schwarzian as a projective differential invariant 

Theorem 3.2.1 [ 1 I]. The Schwarzian derivative is a third-order complete differential in- 
variant for the group of diffeomorphisms of the projective line. 

More precisely, if v and + are two diffeomorphisms of RP’, then 

S(p) = S($) 3A E PSL(2, R), @ = A o cp. 

Theorem 3.2.2 [1,16,26,27]. The Schwarzian S given by (3.1) is a non-trivial 1-cocycle, 
z.e., 

S(P 0 l/f> = @*s(cp) + SC@) Vq, + E Diff+(RPt), 

on the group of orientation-preserving dtreomorphisms of RP’ with values in the 
Diff+(RP’)-module of real quadratic dzfferentials Q(RP’) of RP! Its kernel is PSL(2, R). 

Remark 3.2.1. The Schwarzian cocycle (3.1) is uniquely characterized (up to a constant 
factor) by the property of having kernel PSL(2, R). 

3.3. Cartan formula of the cross-ratio 

A useful means for calculating the Schwarzian derivative of an immersion of the projective 
line is given by 

Theorem 3.3.1 [3]. Consideranimmersionp : RP’ + RP’ andfourpointstl, . . . , t4 E 
RP’ tending to t E RP’;putting tj = p(tj) one has 

(Tl, x2, t3, t4) 

(tl, t2, t3, t4) 
- 1 = gS(q)(t)(tl - t2)(t3 - t4) + [higher-order terms], (3.2) 

where S(p) denotes the Schwarzian derivative (3.1) of v. 

This expression still makes sense for any immersion of the circle S endowed with some 
projective structure given, e.g., by (2.8) or (2.9). We, indeed, have the 

Definition 3.3.1. Let C,O : S --+ S be an immersion identified with one of its representa- 
tives4 in Co3 K, csj (R), then the Schwarzian of 60 is the pull-back of the Schwarzian (3.2) of 

the induced map + of R P ‘, namely 

S(rp) = @*s(g). (3.3) 

We note that (3.3) yields a well-defined quadratic differential on S since one trivially 
finds a*S(qo) = S(p) in view of T(a)*S($) = S(@) for all a E nl (S) g Z. 

4 Choose any element of Cx([w) that commutes with ~1 (s). 
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Proposition 3.3.1. One has, locally, 

S(cp) = S(v) + vO*S(@P) - S(Q). (3.4) 

Proof. UsingGo@ = @oorp,oneeasilyfinds@*S(@)(Q) = ,S(cp)(0)+s(@)((o(e))~‘(0)2- 

S(@)(e). 0 

4. Conformal transformations 

4.1. Conformal Lorentz structures 

Let us recall some basic definitions and facts about two-dimensional Lorentzian confor- 
ma1 geometry. 

Definition 4.1.1 [20]. A conformal Lorentz structure on a surface .E is characterized by 
a pair of transverse foliations; in other words, it is given by a splitting 

T.E = TIE $ T2.E (4.1) 

into two trivial line bundles (light-cone field). We call Nt and N2, respectively, the spaces 
of leaves of the two foliations of C. 

The leaves composing the “grid’ associated to these foliations are, locally, given by 

Nt : 81 = const., N2 : e2 = const. 

The conformal structure is characterized by the global intersection properties of the (null) 
leaves of Nt and N2. 

One can associate to the splitting (4.1) a class of metrics on Z, locally, of the form 
g = F(81, 02) d6Jt de2 where F is some smooth positive function. If g is any metric with 
prescribed null cone field Tl E $ T2.E, we denote by 

kl = IF. glF E C”(Z, @)I (4.2) 

the class of metrics conformally equivalent to g. Thus, a conformal Lorentz structure [31] 
on .E is equivalently defined by (E, [g]). 

Definition 4.1.2. A diffeomorphism q of (E, g) is called conformal - we write q E 
Conf(E, g) -if 

cp*g = fV. g for some fV E C”(Z, RQ). (4.3) 

The function fV is called the conformal factor associated with (p. 

Remark 4.1.1. Dejinition 4.1.2 is general and holds in the Riemannian case. It is, for 
instance, well known that Conf(H2) = PSL(2, W). In the Lorentzian case, the conformal 
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Fig. 2. The hyperboloid 

group of H ‘3’ is, howevel; injinite-dimensional; more 
Conf(H’9’) = Diff(T). 

precisely, we will see that 

4.2. Conformal geometry of the Lorentz hyperboloid 

We have seen (2.6) that the global intersection properties of the rulings of the hyperboloid 
yield (see Fig. 2) 

H=TxT-A (4.4) 

whose metric (2.4), (2.11) is given by 

4 dOI de2 
g1 = leiR _ $92 12. (4.5) 

In view of the previous definitions 4.1.1 and 4.1.2, any conformal (grid-preserving) diffeo- 
morphism (o of a Lorentz surface (E, g) is, locally, of the form ~1 x ~2, where qj E Diff (N’). 
A (global) conformal diffeomorphism of _E must preserve the two foliations by lines. 

In our case, such a transformation of T2 -A must preserve not only the meridians and par- 
allels of T*, but the diagonal A as well. Therefore, cp1 (0) = 402(O) for all 8 E T, whence the 

Proposition 4.2.1 [ 191. There exists a canonical isomorphism 

Diff(A) 3 Conf(H) 

given by the diagonal map: q H 40 x P. 

Let us recall the 

Theorem 4.2.1 [ 191. 
(i) Let cp E Diff+(T) S’ Conf+(H) be given. Then fq = (p*gl)/gl + 1 as one tends 

to the conformal boundary A. 
(ii) The conformal factor fq extends smoothly to H U A = U2 and has, moreovel; A as 

its critical set. 
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(iii) One has Hess(f,,,) [A = i:(q), where 

F(q) = S(p) + &J’(@* - 1) de*. 

115 

(4.6) 

(iv) The Schwarzian ?(c,o) completely determines fV. 

Our proof proceeds as follows. Comparison with the definition (2.11) of the metric gt on 
the hyperboloid H in terms of the cross-ratio prompts the following computation. Given 
any cp E Diff + (U) viewed as a conformal diffeomorphism (4.3) of (H, gl ), apply the Cartan 
formula (3.2) in the case of a diffeomorphism of the circle 8, and get 

((P*gl>@l1f32> 

gl(k e2) 
- 1 = f,@l, 02) - 1, 

(G0*gl)(6, 02) 

gdh e2) 
- 1 = J.S(@)(ei”)(eiQ1 _ f&)* + . . 

(4.7) 

(4.8) 

where @(eiH) = &‘(G) and 0j ----+ 6’ for j = 1,2. A tedious calculation using (3.2) leads to 

Lemma 4.2.1. Zf $ E Diff+(T) is represented by5 cp E Diff2,z(R), one has 

S(@>(e”) = --(q(p)(e) + &(e)* - l))e-*“. (4.9) 

From (4.7)-(4.9) one obtains 

f,(k e2) - 1 = ; (s(p)(e) + #(e)* - 1))(6 - e2)* + . . . (4.10) 

i.e., theorem 1 in [19]. In particular, the conformal factor fP extends to the diagonal A c 

T2 (its critical set) and f,lA = 1, its transverse Hessian being related to the modified 
Schwarzian derivative (see (4.10)) by Hess(fV) = 4 T(q). The fourth item of Theorem 4.2.1 
will be a consequence of Theorem 5.1.2. 

We are thus led to the 

Theorem 4.2.2. 
(i) Given any cp E Conf+(H) of H = T* - A and c # 0, the twice-symmetric tensor 

field @g, - g, of H extends to null injinity A and defines a non-trivial 1-cocycle 

& : v - &*gc - gc)lA (4.11) 

of Diff+(T) with values in the module Q(U) of quadratic differentials of the circle, 
given by the (modijied) Schwa&an derivative (4.6): 

SC = c 5. (4.12) 

(ii) There holds H’(Diff+(T), Q(U)) = R[Sl]. 

5 We denote by Diff znZ @!I) the universal covering of Diff + (U), i.e., the group of those diffeomorphisms 
cp of R such that cp(19 + 27r) = p(8) + 2n. 
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Proof. From the formulae (4.10) and (4.5) one immediately gets 

((p*gt - gl)lA = (i ~(~)(O)(I!+ - Q~)~d@r d&/e”’ - ei’2]-2 + . ..)lA 

= (; F@)(O) de, de2 + e - .)/A 

= $?(p)(e) de2 

= &). 

Then (4.12) is clear by (2.4) and (2.5). 
At last, part (ii) follows immediately from the knowledge that H’ (Diff+(U), Q(T)) is 

one-dimensional [7,8] and generated by the class of the Schwarzian. 0 

Remark 4.2.1. The cocycle 9 w v*g, - gc of Conf+(H) with values in the space of 
twice-covariant symmetric tensor fields is obviously trivial. Non-triviality of the cocycle 
(4.11) quite remarkably stems from the “restriction ” of the latter to null infinity A. 6 

Proposition 4.2.2. The group of direct isometries of the hyperboloid is 

Isom+(H, gc) = ker(S,) 2 PSL(2, W. (4.13) 

Proof. Using (4.1 l), we find that the group Isom+ (H, g,) c Diff + (%) of direct isometries 
is clearly a subgroup of ker(&) E PSL(2, W). Conversely, for any (o E ker(&), and thanks 
to (4.8), the conformal factor in (4.7) is fV = 1, i.e., 40 E Isom+(H, g,). 0 

Theorem 4.2.2 still holds true for the PSL(2, Q-invariant metric (2.12) on S x S - A. 
In fact, a calculation akin to that of (4.7), (4.8) leads to 

Proposition 4.2.3. Given any v E Conf+(H) of ‘FI = S x S - A, where S is endowed 
with the projective structure (2.8) or (2.9) one has 

S(V) = S](V) = ;((o*g, - gl)lA, (4.14) 

where the metric gl on 7-l is given by (2.12) and the universal Schwarzian S by (3.3), 
(3.4). 

4.3. Conformal geometry of theJlat cylinder 

Let us envisage, for a moment, the flat induced Lorentz metric 

go = de1 de2 (4.15) 

on the cylinder H = T2 - A. (A non-significant constant factor might be introduced in the 
definition (4.15) of go.) 

6 This observation is due to Valentin Ovsienko. 
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In this special case, the Diff +(T)-cocycle So defined, in the same manner as in (4.1 l), 

by 

So(q) = @*go - go)lA (4.16) 

is, plainly, a coboundary since go admits a prolongation to A. We, indeed, have So(q)(B) = 
((p’(Q)* - 1) dQ2. Notice that flatness of the metric is now related to triviality of the associated 
cocycle. 

Proposition 4.3.1. The group of direct isometries of the jut cylinder is 

Isom+(H, go) = ker(So) Z T. (4.17) 

Proof. Solving cp*gc = go and q’(0) > 0 gives (p(0) = 8 + t with t E 8, that is cp E 
ker(So). 0 

5. Symplectic structure on conformal classes of metrics on S x S - A 

We analyze, in this section, the structure of the conformal classes of the previously 
introduced metrics g, and go on the “hyperboloid” ‘FI and relate them to the generic coadjoint 
orbits [ 161 in the regular dual of the Virasoro group. It should be recalled that the conformal 
class of gt has first been identified with the homogeneous space Diff+(T)/PSL(2, R) in 

[181. 

5.1. Homogeneous space Diff+(S)/PSL(2, R) 

5.1.1. Conformal classes of curved metrics 
Consider first the curved case. If c # 0, denote by MC the space of metrics on ‘H = 

S x S - A related to gc = c gr (2.4) by a conformal diffeomorphism (see (4.2)), viz. 

M, = {g E kll I g = (o*g,, 9 E Conf+CWJ. 

These classes M, of metrics (see Fig. 3) turn out to have a symplectic structure of their 
own. 

Theorem 5.1.1. If c # 0, the homogeneous space 

MC = W(o - 4p*g,) 

2 Conf+(‘FI)/Isom+(?f, gc> 

is endowed with (weak) symplectic structure wc which reads 

WGg, 62g) = ; 
s 

4, kg, 

A 

where Sjg = Ltjg with [j E Vect(S). 

(5.1) 
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I 

Fig. 3. The conformal classes of metrics on T2 - A 

Proof. From (5.17) below, wc is, indeed, skew-symmetric in its arguments. It is, clearly, 
also closed. We then have &g, E ker wc iff w,(Jtg,, Szg,) = 0 for all ct E Vect(S), i.e., 
iff Lhg,(A = 0, thatisiff&g, = Oinviewof (4.11) and(4.13). ??

We will prove that MC is symplectomorphic to a Kirillov-Segal-Witten Diff + (S)-orbit 
[ 16,27,33] for the affine coadjoint (anti-)action Coado on Q(S) defined by 

Coach (qo)q = Coad(qo)q + O(v), (5.2) 

where the Diff + (S)-coadjoint (anti-)action reads 

Coad(6o)q = (o*q (5.3) 

and where 0, a 1-cocycle of Diff+(S) with values in Q(S), is a particular Souriau cocycle 

~291. 

5.1.2. Intermezzo 

This technical section presents the standard Diff + (S)-cocycles in a guise adapted to any 
projective structure (2.8), (2.9) on the circle S. 

Consider the line element 

on S associated with the developing map @ E Difft,,(R, KU”). Actually, h is a nl (S)- 
invariant line-element of R which therefore descends to S. 
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Let q be a representative in Diff il, (s) (R) of a diffeomorphism of S and let q = @ oq~o@-’ 
denote the diffeomorphism it induces on RP ‘. 

Proposition 5.1.1. 
(i) The Euclidean cocycle E(p) = @*E(g), where E(G) = log((@* de)/ de) reads 

E(q) = log F . 
( > 

(5.4) 

(ii) The afine cocycle A(p) = @* dE(@) is then 

(iii) The Schwarzian cocycle S(p) = @*S(G) (see (3.3), (3.4)) retains the form 

- ;A(~I)~. (5.6) 

Proof. We easily prove (iii) by noticing that the Schwarzian (3.1) can be written in terms 
of the affine coordinate 0 of RP’ as 

S(G)= dBd($$+f($$dO)2 

and the affine cocycle as A(@) = ($“(O)/@‘(0)) de. 0 

For example, the Diff + (U)-Schwarzian in angular coordinate is recovered with @ as in 
(2.8); one finds 

S(P)@) = &NQ), 

i.e., the modified Schwarzian derivative (4.6). See also [27]. 

Proposition 5.1.2. The infinitesimal Schwarzian takes either forms 

for any 6 E Vect(S) with 7 

and 

(5.7) 

Proof. This follows clearly from (4.14) and (5.6). 0 

7 Recall that Div( = (Ltk.)/h. 
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Remark 5.1.1. In local afine coordinate on RP’, the infinitesimal Schwarzian (5.7) of 
e = [(t)a/at retains thefamiliarform 

s(e) = c”‘(t) dt*. 

5.1.3. A Virasoro orbit 
With these preparations, let us formulate the 

Proposition 5.1.3. Endow Diff + (S) with the 1 -fomz (11 de$ned by 

o(8~) = ; 
s 

A(q)Wqo), 

S 

where &p = 6((0 o $) with Se = c E Vect(S) at $r = id. 
(i) The exterior derivative of cx is given, for cl, (2 E Vect(S), by 

W&v> 6240) = 
s 

S(vo>([tl, 621) + 
s 

d(Div41) Div&. 

S S 

(5.8) 

(5.9) 

(ii) Ifa denotes the canonical symplectic structure of the Diff+(S)-afine coadjoint orbit 
c3 of the origin with Souriau cocycle S (see (5.2)) namely if 

0 = Im(S) (5.10) 

2 Diff+(S)/PSL(2, R) (5.11) 

then 

dcx = S*o. (5.12) 

Proof. Since dcr(6t(p, 62(p) = $ J”, d(SIE(q))&E(p) - i s, d(&E(q))SiE((o) let us first 
remark that 

with the above notation. If we posit for convenience a = A/h, and note that h(cr )Div 62 - 
h(&)Div ct = A([tt, &I), a lengthy calculation then leads to 

da(&p, 62~0) = 
s 

(da - ~a*h>A([Cl, hl> + 
s 

d(Div$t)Div&. 

s S 

Whence the sought Eq. (5.9). 
Now, the affine coadjoint orbit of q1 E Q(S) given by the action (5.2) carries a canonical 

symplectic structure CT which reads [29]: 

(5.13) 
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at q = Coado(p)ql; here f E .Z2(Vect(S), R) is the derivative of the group-cocycle 
0 E Z’ (Diff +(S), Q(S)> at the identity. The expression (5.9) of da clearly matches that 
of 0 (5.13) with q1 = 0, 0 = S and f = GF, where the Gelfand-Fuchs cocycle [8] reads 

GF(el, 62) = - 
s 

sG1)(!~2) (5.14) 

s 

according to (5.7). 0 

Our main result is then given by 

Theorem 51.2. The map 

J,:gw ;(g-gc)lA (5.15) 

establishes a symplectomorphism a 

Jc : (f& wc> - to,, Q> (5.16) 

between the metrics of ‘FI = S x S - A conformally related to gC and the afine coadjoint 
orbit 0, = c e 0 (see (5.11)) with central charge c, the inverse curvature (2.3). 

Proof. Let us denote by g, : Conf+ (NH) + MC the orbital map and let us put g = g,(p) = 
q*gc. We find, using (5.1), 

w(bg, S2g) = ; 
s 

ih&(g - gl) + i 
s 

4, Lh kl> 

A A 

=- i / (g - gl)([h, 621) + Fj 1 ie,&(gl) 

A A 

= 
s 

Sl (Vo)(ElY 621) - 
s 

Sl (41 I($21 

A A 

= 
s 

S(V)([~lt C21) - 
s 

sGf1)(~2) 
A A 

with the help of Propositions 4.2.3 and 5.1.2. Note that we have taken into account the 
skew-symmetry of the Gelfand-Fuchs cocycle introduced in (5.9) and (5.14). One thus 
gets 

wt(&g, &g) = @(co), El > 621) + GWI > (2) 

and, since gc = c gl , 

(5.17) 

w, = CWl. 

’ It is the momentum map of the Hamiltonian action of Conf+(z) on (MC, wc). 
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Thanks to (5.9) and (5.12), one can claim that 

da! =&xl 

= s*o. 

At last, this clearly entails 

where a, = c c is the canonical symplectic structure on 0,. 0 

The following diagram summarizes our claim. 
E 

Conf+(‘FI) - Diff+(S) 
I I 

gc 1 
MC 5 1 CS 

0, 
JC- 

5.2. Homogeneous space Diff + (S)/U 

Consider then the flat case (4.15) and introduce the space Ma of metrics (see Fig. 3) on 
‘H = S x S - A related to go by a conformal diffeomorphism, viz. 

MO = {g E [gll I g = v*g0, (D E Conf+WFI>l. 

Theorem 5.2.1. The homogeneous space 

MO = Im(v - v*go) 

% Conf+(‘H)/Isom+(‘F1, go) 

is endowed with a (weak) symplectic structure wo which reads 

where 6jg = Lb g with cj E Vect(S). 

(5.18) 

(5.19) 

Proof. Since go can be prolongated to A, (5.18) may be rewritten as (5.19) which is man- 
ifestly skew-symmetric in its arguments. The closed 2-form wo is weakly non-degenerate 
as 62g E ker wu iff LAgId = 0, i.e., S2g = 0 in view of (4.16) and (4.17). 0 

In fact, MO is symplectomorphic to a Diff + (S)-coadjoint orbit [ 161 as shown below. 
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Let us consider the following quadratic differential 

qo = goId E QW (5.20) 

so that the Diff + (S)-coadjoint (anti-)action 9 Coad given by (see (5.3)) Goad(q) : qo w 
q = q*qo, reads according to (4.16): 

q = 40 + So(q). (5.21) 

Proposition 5.2.1. Endow Diff + (S) with the l-form ~0 dejined by 

HO = - ((P*qo)(U 

where, again, 6~ = S(p o $) with S$ = 6 E Vect(S) at + = id. 
(i) We have, for any cl, <2 E Vect(S), 

dao(dlqo, 82~) = 
s 

((o*qo)(b, t21). 

S 

(ii) The Diff+(S)-coadjoint orbit through qo (5.20) is 

04,, = Im(qo o Ad) 

Z Diff + (S)/U 

and is endowed with the symplectic 2-form ~0 such that 

da0 = (q. o Ad)*ao. 

(5.22) 

(5.23) 

Proof. If Sjp is associated with cj E Vect(S) at p E Diff+(S), one readily finds Sjq = 
Lbq and dao(bl(p, 82~) = -ao([61, S&o) = (q, [cl, e2]) which descends as the canonical 
symplectic 2-form a0 of UqO, namely 

dao(&vo, 62~0) = ~oG%q, 62q). 

We then simply check that ker(dao) is one-dimensional and integrated by ker(So) Z T (see 
(4.17) and (5.21)). 0 

The “flat” counterpart of Theorem 5.1.2 is now at hand. 

Theorem 5.2.2. The map 

Jo : g - glA (5.24) 

establishes a symplectomorphism lo 

Jo : (MO, uo> - (O,, DO> (5.25) 

9 We, indeed, have Coad((p)(qo) = (qo o Ad)(p) for all ‘p E Diff+(S). 
lo It is the momentum map of the Hamiltonian action of Conf+(‘Ft) on (MO. ~0). 
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between the metrics of 3-t = S x S - A conformally related to go and the coadjoint orbit 
Oq, (see (5.23)) with zero central charge. 

Proof. Clear. 0 

5.3. Bott-Thurston cocycle and contactomorphisms 

It is know since the work of Kirillov [ 161 that the Diff+ (S)-homogeneous spaces we dealt 
with in Sections 5.1 and 5.2 are, in fact, genuine coadjoint orbits of the Virasoro group, Vir, 
i.e., the (R, +)-central extension [30] of Diff+(S) that can be recovered as follows in our 
setting. 

Let us emphasize that the l-form a! (5.8) on Diff+(S) fails to be invariant. So, let us 
equip Diff + (S) x R with the following “contact” 1 -form G, viz. 

G(Sq, at> = a(6qJ) + at. (5.26) 

Now, the 2-form dG is Diff+(S)-invariant and plainly descends to Mt as WI (see (5.12) 
and (5.15), (5.16)). We now have the 

Proposition 53.1. Lifting Diff + (S) into the group of automorphisms of(Diff + (S) x R, Z?) 
yields the virasoro group Vir with multiplication law 

(m,t1)*(b02,t2)= (5.27) 

where BT is the Bott-Thurston cocycle [l] ofDiff+(S) 2 Conf+(w). 

Proof. Using the cocycle relation E(q o $) = @*E(v) + E(+) - see (5.4) - and (5.3, 
(5.8), one immediately finds 

o(a((o 0 @)) = ; 
s 

Ilr*(A(lo)G(E(~o))) + ; 
s 

A($)S(E(bo 0 llr)) 

S S 

=a(Sp)+S ; 

[ 
s 

E(a 0 $)A($) 

s 1 
for all ~0, @ E Diff+(S). Looking for those maps (p, t) w (q*, t*) such that (P* = p o + 
and $(a~*, Jt’) = l?(Sq, at) leads to t* = t + BT(p, +) + const., hence, to the group law 
(5.27). 0 
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The triple (S, GF, BT) is a special instance of a general structure that has been coined 
“trilogy of the moment” [ 151. 

Remark 5.3.1. It would be interesting to have a conformal interpretation of the contact 
structure Vir/(kerz n ker dz) above (Ml, WI). 

6. Conclusion and outlook 

This work prompts a series of more or less ambitious questions connected with the 
striking analogies between conformal geometry of Lorentz surfaces and projective ge- 
ometry of conformal infinity that we have just discussed. It constitutes an introduction 
to a more detailed paper (in preparation) where the authors wish to tackle the following 
problems. 

(9 

(ii) 

(iii) 

Is it possible to realize any Virasoro coadjoint orbit i’ as a conformal class of Lorentz 
metrics on the cylinder? If this is so, spell out the symplectic forms in terms of the 
classes of metrics; also study the relationship between the properties of an orbit and the 
dynamics of the null foliations in the associated conformal class. There exists, in fact, a 
map sending the space of Virasoro orbits-modules of projective structures on the circle 
- to the space of modules of Lorentzian conformal structures on the cylinder; analyze 
its properties. More conceptually, given a conic C in the real projective plane, what 
are the links between the space of projective structures on C, the space of Lorentzian 
structures in the exterior of C and the space of Riemannian metrics in the interior 
of C? 
The Ghys theorem [9,23] states that any diffeomorphism of the projective line has at 
least four points where its Schwarzian vanishes, i.e., four points where the contact of the 
graph of the diffeomorphism with its osculating hyperbola is greater than the generic 
one. This result is a Lorentzian analogue of the so-called four vertices theorem I2 for 
closed curves in the Euclidean plane. In our context, the Ghys theorem would imply 
the existence, for any conformal automorphism of the hyperboloid, of some particular 
points where this diffeomorphism is closer than usual to an isometry. 
The orbit Diff (T)/PSL(2, W) embeds symplectically in the universal Teichmtiller space 
T(1) = QS(U)/PSL(2, R), where QS(T) denotes the group of quasi-symmetric home- 
omorphisms of the circle [22]. With the help of the quantum differential calculus of 
Connes, it is possible to construct extensions of the three fundamental cocycles E, A and 
S to the group QS(U) [21]. Can one construct a “quantum analogue” of the Lorentzian 
hyperboloid whose conformal class may be identified with T(l)? 

Let us finally mention two other subjects closely connected with our problem, namely 
the geometry of the Wess-Zumino-Witten model [6] and Douglas’ proof of the Plateau 
problem revisited by Guillemin et al. [ 141. 

” Other isotropy groups are, e.g., the finite coverings of PSL(2, [w) and one-parameter subgroups of the 
form % x Z,; see [13]. 
I2 Any closed simple curve in the plane admits at least four points where its Euclidean curvature is critical. 
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